### EmotionKD: A Cross-Modal Knowledge Distillation Framework for Emotion **Recognition Based on Physiological Signals**

Yucheng Liu, Ziyu Jia, and Haichao Wang

Institute of Automation, Chinese Academy of Sciences, Beijing, China Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, China



# Introduction

# Challenges

- **Emotion Recognition:** 
  - ✓ It is an essential aspect of affective computing that allows machines to understand human emotions;
  - ✓ Physiological signals are highly reliable indicators of emotion changes within the human body.

#### ■ Application of EEG:

- ✓ Unimodal EEG models: Tsception, AP-CapsNet;
- ✓ Multimodal models using EEG: MFFNN, MSMDFN.

#### **Difficulty of Application:**

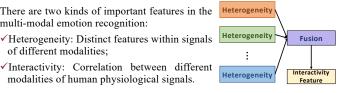
- ✓ Causing the uncomfortable feelings;
- ✓ Subjects' psychological responses may be affected;
- ✓ Harsh data acquisition environment;
- ✓ Cost of facilities is extremely expensive.

■ C1: How can capture both two types of feature in multi-modal model?

There are two kinds of important features in the multi-modal emotion recognition:

✓ Heterogeneity: Distinct features within signals of different modalities;

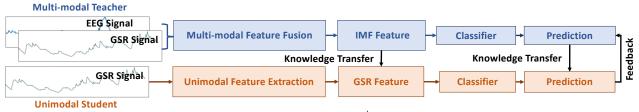
modalities of human physiological signals.



#### **C2:** How to transfer the knowledge flexibly to student model?

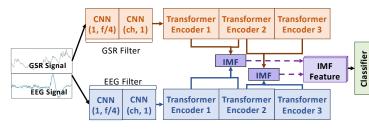
✓ In most knowledge distillation methods, the teacher network is fixed; ✓ Teacher model cannot adjust the output features according to the different training stages of the student.

# Method

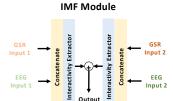


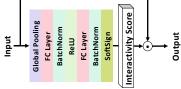
#### S1: Multimodal EmotionNet-Teacher.

- CNN filters for each modality;
- ✓ Dual-stream transformer structure for Heterogeneity;
- ✓ Interactivity-based Modal Fusion (IMF) Module for interactivity extraction from feature of transformer.



#### S2: IMF Module and Interactivity Extractor for interactivity extraction.



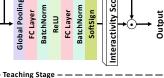


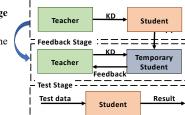
#### S3: Adaptive Feedback Knowledge Distillation

We adding a feedback stage to the traditional knowledge distillation.

- ✓ Training Stage;
- ✓ Feedback Stage;
- ✓ Test Stage.

# Interactivity Extractor





# Results

- We evaluate the performance of EmotionKD on DEAP and HCI-Tagging datasets with SOTA baselines;
- As shown in the following table, EmotionKD achieves the best overall performance compared with other baseline methods.

#### Comparison with the unimodal model baselines

| Methods              | Arousal |          | Valence |          |
|----------------------|---------|----------|---------|----------|
|                      | Acc     | F1-score | Acc     | F1-score |
| DeepConvNet[27]      | 53.70   | 50.95    | 66.45   | 61.15    |
| CNN+RNN[33]          | 53.17   | 36.37    | 67.97   | 64.17    |
| CGAN[42]             | 53.43   | 46.82    | 55.17   | 35.66    |
| CRD[37]              | 50.86   | 50.74    | 61.78   | 56.10    |
| Visual-to-EEG KD[44] | 54.90   | 52.59    | 68.66   | 67.36    |
| EmotionNet-Student   | 55.06   | 53.50    | 69.18   | 68.33    |

#### Comparison with the multimodal model baselines

| Methods            | Arousal |          | Valence |          |
|--------------------|---------|----------|---------|----------|
|                    | Acc     | F1-score | Acc     | F1-score |
| Concatenate        | 55.53   | 49.59    | 62.67   | 59.26    |
| BDAE[41]           | 56.53   | 40.29    | 56.43   | 44.43    |
| CNN-SVM[6]         | 56.85   | 42.03    | 62.09   | 58.00    |
| EmotionNet-Teacher | 62.88   | 60.23    | 66.61   | 66.54    |

# Conclusion

- ✓ We propose a novel multi-modal EmotionNet-Teacher based on a dual-stream transformer structure with an Interactivity-based Modal Fusion (IMF) module;
- ✓ We design an adaptive feedback mechanism for crossmodal knowledge distillation;
- ✓ The proposed EmotionKD method is the first application of cross-modal knowledge distillation in the field of physiological signal-based emotion recognition to transfer fused EEG and GSR features to the unimodal GSR model.