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Introduction Challenges

B Emotion Recognition:
v'It is an essential aspect of affective computing that
allows machines to understand human emotions;
v Physiological signals are highly reliable indicators of
emotion changes within the human body.
B Application of EEG:
v'Unimodal EEG models: Tsception, AP-CapsNet;
v'Multimodal models using EEG: MFFNN, MSMDFN.
B Difficulty of Application:
v'Causing the uncomfortable feelings;
v'Subjects’ psychological responses may be affected,;
v'Harsh data acquisition environment;
v'Cost of facilities is extremely expensive.

B C1: How can capture both two types of feature in multi-modal model?
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B C2: How to transfer the knowledge flexibly to student model?
v'In most knowledge distillation methods, the teacher network is fixed;

There are two kinds of important features in the
multi-modal emotion recognition:

v'Heterogeneity: Distinct features within signals Fusion

of different modalities;

vInteractivity: Correlation between different
modalities of human physiological signals.

v'Teacher model cannot adjust the output features according to the different
training stages of the student.
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Results

v We evaluate the performance of EmotionKD on DEAP and
HCI-Tagging datasets with SOTA baselines;

v As shown in the following table, EmotionKD achieves the
best overall performance compared with other baseline

S1: Multimodal EmotionNet-Teacher.
v'CNN filters for each modality;
v'Dual-stream transformer structure for Heterogeneity;
v Interactivity-based Modal Fusion (IMF) Module for interactivity
extraction from feature of transformer.
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S§2: IMF Module and Interactivity Extractor for interactivity extraction. . . . .
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physiological signal-based emotion recognition to transfer

v'Test Stage. : Test data Result :
| I fused EEG and GSR features to the unimodal GSR model.
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